Bilinear differential forms and the Löwner framework for rational interpolation
نویسنده
چکیده
The Löwner approach, based on the factorization of a special-structure matrix derived from data generated by a dynamical system, has been applied successfully to realization theory, generalized interpolation, and model reduction. We examine some connections between such approach and that based on bilinearand quadratic differential forms arising in the behavioral framework. Dedicated to Prof. Harry L. Trentelmanfriend, colleague, and former supervisoron the occasion of his “sixtieth birthday”
منابع مشابه
Computational Method for Fractional-Order Stochastic Delay Differential Equations
Dynamic systems in many branches of science and industry are often perturbed by various types of environmental noise. Analysis of this class of models are very popular among researchers. In this paper, we present a method for approximating solution of fractional-order stochastic delay differential equations driven by Brownian motion. The fractional derivatives are considered in the Caputo sense...
متن کاملA New Technique for Image Zooming Based on the Moving Least Squares
In this paper, a new method for gray-scale image and color zooming algorithm based on their local information is offered. In the proposed method, the unknown values of the new pixels on the image are computed by Moving Least Square (MLS) approximation based on both the quadratic spline and Gaussian-type weight functions. The numerical results showed that this method is more preferable to biline...
متن کاملInterpolation and Complex Symmetry
In a separable complex Hilbert space endowed with an isometric conjugate-linear involution, we study sequences orthonormal with respect to an associated bilinear form. Properties of such sequences are measured by a positive, possibly unbounded angle operator which is formally orthogonal as a matrix. Although developed in an abstract setting, this framework is relevant to a variety of eigenvecto...
متن کاملAn Optimal G^2-Hermite Interpolation by Rational Cubic Bézier Curves
In this paper, we study a geometric G^2 Hermite interpolation by planar rational cubic Bézier curves. Two data points, two tangent vectors and two signed curvatures interpolated per each rational segment. We give the necessary and the sufficient intrinsic geometric conditions for two C^2 parametric curves to be connected with G2 continuity. Locally, the free parameters w...
متن کاملImplicit Volterra series interpolation for model reduction of bilinear systems
We propose a new interpolatory framework for model reduction of largescale bilinear systems. The input-output representation of a bilinear system in frequency domain involves a series of multivariate transfer functions, each representing a subsystem of the bilinear system. If a weighted sum of these multivariate transfer functions associated with a reduced bilinear system interpolates a weighte...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2015